
Automated Annotation Inference
forMCP-Based Agents

Grigoris Ntousakis
∗

Brown University

Providence, RI, USA

gntousakis@brown.edu

Julian James Stephen

IBM Research

Yorktown Heights, NY, USA

julian.stephen@ibm.com

Michael V. Le

IBM Research

Yorktown Heights, NY, USA

mvle@us.ibm.com

Sai Sree Laya Chukkapalli

IBM Research

Yorktown Heights, NY, USA

saisreelaya.chukkapalli@ibm.com

Teryl Taylor

IBM Research

Yorktown Heights, NY, USA

terylt@ibm.com

Frederico Araujo

IBM Research

Yorktown Heights, NY, USA

frederico.araujo@ibm.com

Abstract
Model Context Protocol (MCP) provides a standardized in-

terface for agents to interact with external tools and data

sources such as file systems, APIs, and databases. However,

the flexibility of MCP, especially when combined with large

language models (LLMs) for autonomous planning, intro-

duces vulnerabilities, including unrestricted tool access cou-

pled with opaque decision-making processes, which can lead

to system failures or security breaches. To address these risks,

Information Flow Control (IFC) systems are commonly em-

ployed to enforce policies that regulate data flowwithin and

between components. However, these systems typically rely

onmanually annotated labels. This talk presents an approach

for automatically inferring IFC annotations by analyzing an

agent’s source code, deployment configuration, and runtime

behavior. Our method targets MCP-based agents and lever-

ages a combination of static and dynamic analysis techniques.

By analyzing the agent’s source code and libraries,we identify

capabilities and data handling patterns that are then enriched

with metadata extracted from deployment configurations.

Additionally, we monitor network traffic and filesystem state

within an execution environment to capture dynamic inter-

actions and validate the inferred annotations. This multi-step

approach improves the accuracy of label inference, enabling

correct and secure deployment.

Talk Outline
As AI agents gain widespread adoption, particularly those

built using the Model Context Protocol (MCP) [5], ensuring

the confidentiality and integrityof sensitivedatahasbecomea

pressing concern.MCP, a recent advancement in agent frame-

works, provides a standardized interface for agents to interact

with external tools and data sources, such as file systems,

APIs, and databases. However, the flexibility of MCP, espe-

cially when combined with large language models (LLMs)

for autonomous planning, introduces significant vulnerabil-

ities, including unrestricted tool access coupled with opaque

∗
This work was done while the author was with IBM Research.

decision-making processes, which can lead to system fail-

ures [2] and security breaches [1].

To address these risks, Information Flow Control (IFC) sys-

tems [3, 4, 7, 8] are commonly used to enforce policies that

regulate data flowwithin and between components. However,

these systems typically rely onmanual annotations,which are

time-consuming and difficult to scale—especially in complex

deployment scenarios.

This talk introducesAAIMA(AutomatedAnnotation Infer-
ence forMCPAgents), a framework for automatically infer-

ring IFC annotations by analyzing an agent’s source code, de-

ployment configuration, and runtime behavior. Our method

targets MCP-based agents and leverages a combination of

static and dynamic analysis techniques, inspired by prior

work. By analyzing the agent’s source code and libraries,

we identify capabilities and data handling patterns, which

are then infused with metadata extracted from deployment

configurations. Additionally, we monitor network traffic and

filesystem state within a Dockerized environment to capture

dynamic interactions and validate the inferred annotations.

This multi-step approach improves the accuracy of label in-

ference, enabling correct and secure deployment.

The annotations introduced here enable the declaration of

capabilities for the underlying MCP tools (see Table 1). These

tools support capability annotations such as network access

or filesystemwrites. Each of the four optional metadata fields

can be used to enforce policies or provide the necessary meta-

data for the creation of Software Bill of Materials (SBOM).

Source-code Analysis: As a first step, AAIMA parses the

source code of the agent using static analysis. AAIMA sup-

ports Python agent code, but the approach can be expanded
to include TypeScript agents too. AAIMA generates an ab-

stract syntax tree (AST) from the source code and walks each

node of the tree. The user needs to provide an extensive list of

libraries and functions from these libraries to the static anal-

ysis tool to accurately infer the characteristics of the source

code. The more exhaustive this list, the more accurate the

analysis results will be, reducing false negatives. Moreover,

anything not included in the list of libraries and function calls

1

SAA ’25, October 13, 2025, Seoul, Korea G. Ntousakis, J. Stephen, M. Le, S. Chukkapalli, T. Taylor, and F. Araujo

Table 1. Proposed Tool Annotations.

Annotations Type Example Description

network𝛽 boolean | [CIDR | FQDN] ["10.0.0.0/8", "google.com"] Allow access to specific endpoints

filesystem𝛽 boolean | [str(path)] ["/home/work/data"] Restrict access to files

environment𝛽 boolean | [str(env_var)] ["TARGET", "DESTINATION"] Control use of environment variables

execution𝛽 boolean | [str(exec_path)] ["/usr/bin/vim", "/bin/brew"] Restrict binary execution

𝛽
Capability annotations

should not be part of the agent or used by the enterprise, as it

can be potentially insecure. However, these annotations are

sound but not complete.

DeploymentAnalysis: To improve the accuracy of the anal-

ysis, AAIMA examines the deployment of YAMLs or JSONs for
the agent. By analyzing these deployment files, AAIMA can

validate the annotations derived from the source code anal-

ysis. This allows AAIMA to verify any filesystemmounts or

environment interactions, thus verifying thefilesystem and
environment annotations. If there are no filesystemmounts,

any possible interactionswill be confined to the running envi-

ronment and will not influence the global state of the system.

The same applies to environment variables; if there are no

interactions with the environment, they will not modify the

actual state of the system.

DynamicAnalysis: Asafinal step,AAIMAusesacontrolled

environment to track the agent interactions using dynamic

analysis. To drive this analysis, the user uses input from the

provided test cases by the agent developers or example work-

loads using the client documentation. This allows AAIMA to

track any interactionswith thefilesystem, aswell as incoming

and outgoing network packets. For filesystemmodifications,

AAIMA takes a snapshot of the filesystem state before and

after the execution of the agent and compares them to the ac-

tual filesystem. Any differences are documented. For network

packets, AAIMAmonitors the network interface to track all

incoming and outgoing packets, which are recorded in a pcap
file for analysis after execution. Based on these system state

differences and network tracking, AAIMA can derive and

validate the filesystem and network annotations.

TalkOutline: The presentationwill beginwith an overview

of theMCPecosystem, includingdefinitionsof theMCPserver

and client environments. We will then showcase representa-

tiveMCPservers, selected frommultiple categorieswithin the

public collections [6], to illustrate the characteristics we aim

toextract.Next,wewill detail our analysis techniques, present

preliminary results from our prototype system, and demon-

strate how these techniques enable accurate and scalable label

inferencewithoutmanual intervention.The talkwill conclude

with a discussion of future directions and a call to action for

strengthening security in MCP-based agent systems.

References
[1] 2025. GitHubMCP Exploited: Accessing private repositories via MCP.

https://invariantlabs.ai/blog/mcp-github-vulnerability. Accessed:

2025-07-04.

[2] 2025. MCP Server Breaks Machine over SSH. https:
//x.com/bshlgrs/status/1840577720465645960. Accessed: 2025-07-04.

[3] Manuel Costa, Boris Köpf, Aashish Kolluri, Andrew Paverd, Mark

Russinovich, Ahmed Salem, Shruti Tople, LukasWutschitz, and Santiago

Zanella-Béguelin. 2025. Securing AI Agents with Information-Flow

Control. arXiv:2505.23643 [cs.CR] https://arxiv.org/abs/2505.23643
[4] Edoardo Debenedetti, Ilia Shumailov, Tianqi Fan, Jamie Hayes, Nicholas

Carlini, Daniel Fabian, Christoph Kern, Chongyang Shi, Andreas Terzis,

and Florian Tramèr. 2025. Defeating Prompt Injections by Design.

arXiv:2503.18813 [cs.CR] https://arxiv.org/abs/2503.18813
[5] Model Context Protocol Team. 2025. Introduction -Model Context Proto-

col. https://modelcontextprotocol.io/introduction Accessed: 2025-07-08.

[6] punkpeye. 2025. AwesomeMCP Servers. https://github.com/punkpeye/
awesome-mcp-servers. Accessed: 2025-07-18.

[7] Andrei Sabelfeld and Andrew C Myers. 2003. Language-based

information-flow security. IEEE Journal on selected areas in communi-
cations 21, 1 (2003), 5–19.

[8] YuhaoWu, Franziska Roesner, Tadayoshi Kohno, Ning Zhang, and Umar

Iqbal. 2024. Isolategpt: An execution isolation architecture for llm-based

agentic systems. arXiv preprint arXiv:2403.04960 (2024).

2

https://invariantlabs.ai/blog/mcp-github-vulnerability
https://x.com/bshlgrs/status/1840577720465645960
https://x.com/bshlgrs/status/1840577720465645960
https://arxiv.org/abs/2505.23643
https://arxiv.org/abs/2505.23643
https://arxiv.org/abs/2503.18813
https://arxiv.org/abs/2503.18813
https://modelcontextprotocol.io/introduction
https://github.com/punkpeye/awesome-mcp-servers
https://github.com/punkpeye/awesome-mcp-servers

	Abstract
	References

