Automated Annotation Inference
for MCP-Based Agents

Grigoris Ntousakis”
Brown University
Providence, RI, USA
gntousakis@brown.edu

Sai Sree Laya Chukkapalli
IBM Research
Yorktown Heights, NY, USA
saisreelaya.chukkapalli@ibm.com

Abstract

Model Context Protocol (MCP) provides a standardized in-
terface for agents to interact with external tools and data
sources such as file systems, APIs, and databases. However,
the flexibility of MCP, especially when combined with large
language models (LLMs) for autonomous planning, intro-
duces vulnerabilities, including unrestricted tool access cou-
pled with opaque decision-making processes, which can lead
to system failures or security breaches. To address these risks,
Information Flow Control (IFC) systems are commonly em-
ployed to enforce policies that regulate data flow within and
between components. However, these systems typically rely
on manually annotated labels. This talk presents an approach
for automatically inferring IFC annotations by analyzing an
agent’s source code, deployment configuration, and runtime
behavior. Our method targets MCP-based agents and lever-
ages a combination of static and dynamic analysis techniques.
By analyzing the agent’s source code and libraries, we identify
capabilities and data handling patterns that are then enriched
with metadata extracted from deployment configurations.
Additionally, we monitor network traffic and filesystem state
within an execution environment to capture dynamic inter-
actions and validate the inferred annotations. This multi-step
approach improves the accuracy of label inference, enabling
correct and secure deployment.

Talk Outline

As Al agents gain widespread adoption, particularly those
built using the Model Context Protocol (MCP) [5], ensuring
the confidentiality and integrity of sensitive datahas become a
pressing concern. MCP, a recent advancement in agent frame-
works, provides a standardized interface for agents to interact
with external tools and data sources, such as file systems,
APIs, and databases. However, the flexibility of MCP, espe-
cially when combined with large language models (LLMs)
for autonomous planning, introduces significant vulnerabil-
ities, including unrestricted tool access coupled with opaque

*This work was done while the author was with IBM Research.

Julian James Stephen
IBM Research
Yorktown Heights, NY, USA
julian.stephen@ibm.com

Teryl Taylor
IBM Research
Yorktown Heights, NY, USA
terylt@ibm.com

Michael V. Le
IBM Research
Yorktown Heights, NY, USA
mvle@us.ibm.com

Frederico Araujo
IBM Research
Yorktown Heights, NY, USA
frederico.araujo@ibm.com

decision-making processes, which can lead to system fail-
ures [2] and security breaches [1].

To address these risks, Information Flow Control (IFC) sys-
tems [3, 4, 7, 8] are commonly used to enforce policies that
regulate data flow within and between components. However,
these systems typically rely on manual annotations, which are
time-consuming and difficult to scale—especially in complex
deployment scenarios.

This talk introduces AAIMA (Automated Annotation Infer-
ence for MCP Agents), a framework for automatically infer-
ring IFC annotations by analyzing an agent’s source code, de-
ployment configuration, and runtime behavior. Our method
targets MCP-based agents and leverages a combination of
static and dynamic analysis techniques, inspired by prior
work. By analyzing the agent’s source code and libraries,
we identify capabilities and data handling patterns, which
are then infused with metadata extracted from deployment
configurations. Additionally, we monitor network traffic and
filesystem state within a Dockerized environment to capture
dynamic interactions and validate the inferred annotations.
This multi-step approach improves the accuracy of label in-
ference, enabling correct and secure deployment.

The annotations introduced here enable the declaration of
capabilities for the underlying MCP tools (see Table 1). These
tools support capability annotations such as network access
or filesystem writes. Each of the four optional metadata fields
can be used to enforce policies or provide the necessary meta-
data for the creation of Software Bill of Materials (SBOM).
Source-code Analysis: As a first step, AAIMA parses the
source code of the agent using static analysis. AAIMA sup-
ports Python agent code, but the approach can be expanded
to include TypeScript agents too. AAIMA generates an ab-
stract syntax tree (AST) from the source code and walks each
node of the tree. The user needs to provide an extensive list of
libraries and functions from these libraries to the static anal-
ysis tool to accurately infer the characteristics of the source
code. The more exhaustive this list, the more accurate the
analysis results will be, reducing false negatives. Moreover,
anything not included in the list of libraries and function calls

SAA 25, October 13, 2025, Seoul, Korea

G. Ntousakis, J. Stephen, M. Le, S. Chukkapalli, T. Taylor, and F. Araujo

Table 1. Proposed Tool Annotations.

Description

Annotations Type Example
network? boolean | [CIDR | FQDN]
filesystemﬁ boolean | [str(path)] ["/home/work/data"]

environment? boolean | [str(env_var)]
executionf boolean | [str(exec_path)]

["10.0.0.0/8", "google.com"]

["TARGET", "DESTINATION"]
["/usr/bin/vim", "/bin/brew"] Restrict binary execution

Allow access to specific endpoints
Restrict access to files
Control use of environment variables

B Capability annotations

should not be part of the agent or used by the enterprise, as it
can be potentially insecure. However, these annotations are
sound but not complete.

Deployment Analysis: To improve the accuracy of the anal-
ysis, AAIMA examines the deployment of YAMLs or JSONs for
the agent. By analyzing these deployment files, AAIMA can
validate the annotations derived from the source code anal-
ysis. This allows AAIMA to verify any filesystem mounts or
environment interactions, thus verifying the filesystemand
environment annotations. If there are no filesystem mounts,
any possible interactions will be confined to the running envi-
ronment and will not influence the global state of the system.
The same applies to environment variables; if there are no
interactions with the environment, they will not modify the
actual state of the system.

DynamicAnalysis: Asafinal step, AAIMA usesa controlled
environment to track the agent interactions using dynamic
analysis. To drive this analysis, the user uses input from the
provided test cases by the agent developers or example work-
loads using the client documentation. This allows AAIMA to
track any interactions with the filesystem, as well as incoming
and outgoing network packets. For filesystem modifications,
AAIMA takes a snapshot of the filesystem state before and
after the execution of the agent and compares them to the ac-
tual filesystem. Any differences are documented. For network
packets, AAIMA monitors the network interface to track all
incoming and outgoing packets, which are recorded in a pcap
file for analysis after execution. Based on these system state
differences and network tracking, AAIMA can derive and
validate the filesystemand network annotations.

Talk Outline: The presentation will begin with an overview
of the MCP ecosystem, including definitions of the MCP server
and client environments. We will then showcase representa-
tive MCP servers, selected from multiple categories within the
public collections [6], to illustrate the characteristics we aim
to extract. Next, we will detail our analysis techniques, present
preliminary results from our prototype system, and demon-
strate how these techniques enable accurate and scalable label
inference without manual intervention. The talk will conclude
with a discussion of future directions and a call to action for
strengthening security in MCP-based agent systems.

References
[1] 2025. GitHub MCP Exploited: Accessing private repositories via MCP.

https://invariantlabs.ai/blog/mcp-github-vulnerability. ~ Accessed:
2025-07-04.
[2] 2025. MCP Server Breaks Machine over SSH. https:

//x.com/bshlgrs/status/1840577720465645960. Accessed: 2025-07-04.
[3] Manuel Costa, Boris Kopf, Aashish Kolluri, Andrew Paverd, Mark
Russinovich, Ahmed Salem, Shruti Tople, Lukas Wutschitz, and Santiago
Zanella-Béguelin. 2025. Securing Al Agents with Information-Flow
Control. arXiv:2505.23643 [cs.CR] https://arxiv.org/abs/2505.23643
Edoardo Debenedetti, Ilia Shumailov, Tianqi Fan, Jamie Hayes, Nicholas
Carlini, Daniel Fabian, Christoph Kern, Chongyang Shi, Andreas Terzis,
and Florian Trameér. 2025. Defeating Prompt Injections by Design.
arXiv:2503.18813 [cs.CR] https://arxiv.org/abs/2503.18813
[5] Model Context Protocol Team. 2025. Introduction - Model Context Proto-

col. https://modelcontextprotocol.io/introduction Accessed: 2025-07-08.

[4

flanr)

[6] punkpeye. 2025. Awesome MCP Servers. https://github.com/punkpeye/
awesome-mcp-servers. Accessed: 2025-07-18.
[7] Andrei Sabelfeld and Andrew C Myers. 2003. Language-based

information-flow security. IEEE Journal on selected areas in communi-
cations 21, 1(2003), 5-19.

[8] Yuhao Wu, Franziska Roesner, Tadayoshi Kohno, Ning Zhang, and Umar
Igbal. 2024. Isolategpt: An execution isolation architecture for llm-based
agentic systems. arXiv preprint arXiv:2403.04960 (2024).

https://invariantlabs.ai/blog/mcp-github-vulnerability
https://x.com/bshlgrs/status/1840577720465645960
https://x.com/bshlgrs/status/1840577720465645960
https://arxiv.org/abs/2505.23643
https://arxiv.org/abs/2505.23643
https://arxiv.org/abs/2503.18813
https://arxiv.org/abs/2503.18813
https://modelcontextprotocol.io/introduction
https://github.com/punkpeye/awesome-mcp-servers
https://github.com/punkpeye/awesome-mcp-servers

	Abstract
	References

